Exam Calculus 2

8 April 2019, 18:30-21:30

The exam consists of 6 problems. You have 180 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $[5+5+5=15$ Points $]$ Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y^{2}}{x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array} .\right.
$$

(a) Is f continuous at $(x, y)=(0,0)$? Justify your answer.
(b) Use the definition of directional derivatives to determine for which unit vectors $\boldsymbol{u}=(v, w) \in \mathbb{R}^{2}$ the directional derivative $D_{\boldsymbol{u}} f(0,0)$ exists.
(c) Is f differentiable at $(x, y)=(0,0)$? Justify your answer.
2. [15 Points] Suppose $z=f(x, y)$ has continuous partial derivatives. Let us denote the function obtained by substituting $x=\mathrm{e}^{r} \cos \theta$ and $y=\mathrm{e}^{r} \sin \theta$ as \tilde{z}. Show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\mathrm{e}^{-2 r}\left[\left(\frac{\partial \tilde{z}}{\partial r}\right)^{2}+\left(\frac{\partial \tilde{z}}{\partial \theta}\right)^{2}\right] .
$$

3. $[6+3+6=15$ Points $]$ Consider the curve parametrized by $\mathbf{r}:[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=t \mathbf{i}+\frac{\sqrt{2}}{2} t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}
$$

(a) Determine the length of the curve.
(b) For each point on the curve, determine a unit tangent vector.
(c) At each point on the curve, determine the curvature of the curve.
4. $\left[\mathbf{3}+\mathbf{6}+\mathbf{6}=\mathbf{1 5}\right.$ Points] Let S be the ellipsoid in \mathbb{R}^{3} defined by

$$
x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=3
$$

which contains the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,2,3)$.
(a) Compute the tangent plane of S at the point $\left(x_{0}, y_{0}, z_{0}\right)$.
(b) Show that near the point $\left(x_{0}, y_{0}, z_{0}\right)$ the ellipsoid S is locally given as the graph of a function over the (x, y) plane, i.e. there is a function $f:(x, y) \mapsto f(x, y)$ such that near $\left(x_{0}, y_{0}, z_{0}\right)$ the ellipsoid is locally given by $z=f(x, y)$. Compute the partial derivatives f_{x} and f_{y} at $\left(x_{0}, y_{0}\right)$ and show that the graph of the linearization of f at $\left(x_{0}, y_{0}\right)$ agrees with the tangent plane found in part (a).
(c) For a point $P=(x, y, z)$ in S, there is a box inscribed in S with corners $(x, y, z),(x, y,-z),(x,-y,-z),(x,-y, z),(-x, y, z),(-x, y,-z),(-x,-y,-z)$ and $(-x,-y, z)$. Use the method of Lagrange multipliers to determine the box with largest possible volume.
5. $[4+5+6=\mathbf{1 5}$ Points $]$ Let a, b and c be continuous functions $\mathbb{R} \rightarrow \mathbb{R}$.
(a) Show that

$$
\mathbf{F}=(a(x)+y+z) \mathbf{i}+(x+b(y)+z) \mathbf{j}+(x+y+c(z)) \mathbf{k}
$$

is conservative.
(b) Determine a scalar potential for \mathbf{F}.
(c) For $a(x)=x, b(y)=y^{2}$ and $c(z)=z^{3}$, compute the line integral along the straight line segment connecting the point $p=\mathbf{i}+\mathbf{j}$ to the point $q=\mathbf{j}+\mathbf{k}$. Verify this result using the potential function from part (b).
6. $\left[\mathbf{5}+\mathbf{5}+\mathbf{5}=\mathbf{1 5}\right.$ Points] Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto f(x, y, z)$ be a function of class C^{1}, and let D be a solid region in \mathbb{R}^{3}. Let $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$ be the outward normal unit normal vector to $S=\partial D$ (the boundary of D).
(a) If $\mathbf{a} \in \mathbb{R}^{3}$ is any constant vector and $\mathbf{F}=f \mathbf{a}$, show that $\nabla \cdot \mathbf{F}=\nabla f \cdot \mathbf{a}$.
(b) Use part (a) with $\mathbf{a}=\mathbf{i}$ to show that

$$
\oiint_{S} f n_{1} \mathrm{~d} S=\iiint_{D} \frac{\partial f}{\partial x_{1}} \mathrm{~d} V,
$$

and obtain similar results by letting a equal \mathbf{j} and \mathbf{k}.
(c) Define a vector quantity $\oiint_{S} f \mathrm{~d} \mathbf{S}=\oiint_{S} f \mathbf{n} \mathrm{~d} S$ by

$$
\oiint_{S} f \mathbf{n} \mathrm{~d} S=\left(\oiint_{S} f n_{1} \mathrm{~d} S, \oiint_{S} f n_{2} \mathrm{~d} S, \oiint_{S} f n_{3} \mathrm{~d} S\right)
$$

Show that with this notation

$$
\oiint_{S} f \mathbf{n} \mathrm{~d} S=\iiint_{D} \nabla f \mathrm{~d} V,
$$

where the right hand side is a vector whose components are obtained by integrating each of the scalar components of the integrand.

Solutions

1. (a) Substituting polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ for $(x, y) \neq(0,0)$ gives

$$
\frac{x^{2} y^{2}}{x^{4}+y^{4}}=\frac{r^{4} \cos ^{2} \theta \sin ^{2} \theta}{r^{4}\left(\cos ^{4} \theta+\sin ^{4} \theta\right)}=\frac{\cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}
$$

For $r \rightarrow 0$, this has an limit that depends on θ. For example, for $\theta=\frac{\pi}{4}$, the limit is

$$
\frac{\cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}=\frac{\frac{1}{2} \cdot \frac{1}{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{2}
$$

which is not equal to $f(0,0)=0$. The function f is hence not continuous at $(x, y)=(0,0)$.
(b) Let $\boldsymbol{u}=(v, w) \in \mathbb{R}^{2}$ be a unit vector, i.e. $v^{2}+w^{2}=1$. Then for the directional derivative $D_{\boldsymbol{u}} f(0,0)$ to exist the difference quotient

$$
\frac{f(t v, t w)-f(0,0)}{t}
$$

must have a limit for $t \rightarrow 0$. For $t \neq 0$, we have

$$
\frac{f(t v, t w)-f(0,0)}{t}=\frac{\frac{t^{4} v^{2} w^{2}}{t^{4}\left(v^{4}+w^{4}\right)}-0}{t}=\frac{1}{t} \frac{v^{2} w^{2}}{v^{4}+w^{4}} .
$$

This has a limit for $t \rightarrow 0$ only if $v^{2} w^{2}=0$, i.e. $v=0$ or $w=0$. This means that only directional derivatives in the direction of the x-axis and the y-axis exist. The derivatives are $f_{x}(0,0)=f_{y}(0,0)=0$.
(c) f is not differentiable at $(x, y)=(0,0)$ because f is not continuous at $(x, y)=$ $(0,0)$ as we have seen in part (a). Also if f was differentiable at $(x, y)=(0,0)$ then the directional derivative in part (b) would equal $\boldsymbol{u} \cdot \nabla f(0,0)=v f_{x}(0,0)+$ $w w f_{y}(0,0)=0$. But the directional derivative does not exist for every direction \boldsymbol{u} as we have seen in part (b).
2. By the chain rule, we have

$$
\begin{aligned}
\frac{\partial \tilde{z}}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\
& =\frac{\partial z}{\partial x} e^{r} \cos \theta+\frac{\partial z}{\partial y} e^{r} \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \tilde{z}}{\partial \theta} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} \\
& =\frac{\partial z}{\partial y} e^{r} \cos \theta-\frac{\partial z}{\partial x} e^{r} \sin \theta
\end{aligned}
$$

So we have

$$
\left[\frac{\partial \tilde{z}}{\partial r}\right]^{2}=\left[\frac{\partial z}{\partial x}\right]^{2}\left(e^{r} \cos \theta\right)^{2}+2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} e^{r} \cos \theta \cdot e^{r} \sin \theta+\left[\frac{\partial z}{\partial y}\right]^{2}\left(e^{r} \sin \theta\right)^{2}
$$

and

$$
\left[\frac{\partial \tilde{z}}{\partial \theta}\right]^{2}=\left[\frac{\partial z}{\partial x}\right]^{2}\left(e^{r} \sin \theta\right)^{2}-2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} e^{r} \cos \theta \cdot e^{r} \sin \theta+\left[\frac{\partial z}{\partial y}\right]^{2}\left(e^{r} \cos \theta\right)^{2}
$$

Adding the latter two equations yields

$$
\begin{aligned}
{\left[\frac{\partial \tilde{z}}{\partial r}\right]^{2}+\left[\frac{\partial \tilde{z}}{\partial \theta}\right]^{2} } & =\left(e^{r}\right)^{2}\left[\frac{\partial z}{\partial x}\right]^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\left(e^{r}\right)^{2}\left[\frac{\partial z}{\partial y}\right]^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =e^{2 r}\left[\left[\frac{\partial z}{\partial x}\right]^{2}+\left[\frac{\partial z}{\partial y}\right]^{2}\right]
\end{aligned}
$$

which gives the desired equality

$$
\left[\frac{\partial z}{\partial x}\right]^{2}+\left[\frac{\partial z}{\partial y}\right]^{2}=e^{-2 r}\left[\left[\frac{\partial \tilde{z}}{\partial r}\right]^{2}+\left[\frac{\partial \tilde{z}}{\partial \theta}\right]^{2}\right] .
$$

3. (a) The tangent vector

$$
\mathbf{r}^{\prime}(t)=1 \mathbf{i}+\sqrt{2} t \mathbf{j}+t^{2} \mathbf{k}
$$

has length

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{1+2 t^{2}+t^{4}}=1+t^{2}
$$

The length of the curve is hence

$$
\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t=\int_{0}^{1}\left(1+t^{2}\right) \mathrm{d} t=t+\left.\frac{1}{3} t^{3}\right|_{t=0} ^{t=1}=1+\frac{1}{3}=\frac{4}{3}
$$

(b) Normalizing the tangent vector found in part (a) gives the unit tangent vector at the point $\mathbf{r}(t)$ as

$$
\mathbf{T}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}}\left(1 \mathbf{i}+\sqrt{2} t \mathbf{j}+t^{2} \mathbf{k}\right)
$$

(c) The curvature κ of the curve at the point $\mathbf{r}(t)$ is given by

$$
\kappa=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{T}(t)\right|=\frac{1}{1+t^{2}} \frac{\sqrt{2}}{1+t^{2}}=\frac{\sqrt{2}}{\left(1+t^{2}\right)^{2}}
$$

4. (a) The ellipsoid S is given by the zero-level set of the function $F(x, y, z)=x^{2}+$ $\frac{y^{2}}{4}+\frac{z^{2}}{9}-3$. We can hence find a normal vector of the tangent plane of S at $\left(x_{0}, y_{0}, z_{0}\right)$ from $\nabla F\left(x_{0}, y_{0}, z_{0}\right)=2 x_{0} \mathbf{i}+\frac{1}{2} y_{0} \mathbf{j}+\frac{2}{9} z_{0} \mathbf{k}=2 \mathbf{i}+1 \mathbf{j}+\frac{2}{3} \mathbf{k}$. The tangent plane is hence given by $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0$, i.e.

$$
2(x-1)+(y-2)+\frac{2}{3}(z-3)=0
$$

or equivalently,

$$
6 x+3 y+2 z=18
$$

(b) Using the fact that S is given by the zero-level set of the function F defined in part (a) the local existence of the function f follows from the Implicit Function Theorem if we can show that $\frac{\partial F}{\partial z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0$. The latter follows from $\frac{\partial F}{\partial z}\left(x_{0}, y_{0}, z_{0}\right)=\frac{2}{9} z_{0}=\frac{2}{3}$. The Implicit Function Theorem gives

$$
f_{x}\left(x_{0}, y_{0}\right)=-\frac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{. F_{z}\left(x_{0}, y_{0}, z_{0}\right)}=-\frac{2 x_{0}}{\frac{2}{9} z_{0}}=-\frac{2}{\frac{2}{3}}=-3
$$

and

$$
f_{y}\left(x_{0}, y_{0}\right)=-\frac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}=-\frac{\frac{1}{2} y_{0}}{\frac{2}{9} z_{0}}=-\frac{1}{\frac{2}{3}}=-\frac{3}{2} .
$$

The linearization of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
\begin{aligned}
L(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& =3-3(x-1)-\frac{3}{2}(y-2) \\
& =9-3 x-\frac{3}{2} y .
\end{aligned}
$$

The graph of the linearization is given by the equation $z=L(x, y)$ which agrees with the tangent plane found in part (a).
(c) The volume of the box is given by $V(x, y, z)=8 x y z$. It follows from the Theorem on Lagrange Multipliers that at a critical point $(x, y, z) \in S$ of V restricted to S there is a $\lambda \in \mathbb{R}$ such that $\nabla V(x, y, z)=\lambda \nabla F(x, y, z)$ where we use that the constraint S is given by the zero-level set of the function F defined in part (a). In order to find the critical points we have to solve the set of equations

$$
\begin{aligned}
V_{x}(x, y, z) & =\lambda F_{x}(x, y, z), \\
V_{y}(x, y, z) & =\lambda F_{y}(x, y, z), \\
V_{z}(x, y, z) & =\lambda F_{z}(x, y, z), \\
F(x, y, z) & =0 .
\end{aligned}
$$

for x, y, z and λ. This gives

$$
\begin{aligned}
8 y z & =\lambda 2 x \\
8 x z & =\lambda \frac{1}{2} y \\
8 x y & =\lambda \frac{2}{9} z \\
x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9} & =3
\end{aligned}
$$

As for $x=0, y=0$ or $z=0, V(x, y, z)=0$ we can assume $x, y, z \neq 0$. We then get

$$
\begin{aligned}
4 \frac{y z}{x} & =\lambda, \\
16 \frac{x z}{y} & =\lambda, \\
36 \frac{x y}{z} & =\lambda, \\
x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9} & =3
\end{aligned}
$$

Equating the left sides of the first and the second equality gives $y=2 x$. Equating the left sides of the first and the third equality gives $z=3 x$. This allows one to eliminate y and z in the last equality to get $3 x^{2}=3$ which gives $x=1$ (or $x=-1$ which we can discard by symmetry). So we get $y=2 x=2$ and $z=3 x=3$. The largest volume is hence $V=8 \cdot 1 \cdot 2 \cdot 3=48$.
5. (a) Since \mathbf{F} is defined on a simply connected domain it is sufficient to show that $\nabla \times \mathbf{F}=0$ in order to prove that \mathbf{F} is conservative.:
$\nabla \times \mathbf{F}(x, y, z)=\left(\partial_{y} F_{z}-\partial_{z} F_{y}, \partial_{z} F_{x}-\partial_{x} F_{z}, \partial_{x} F_{y}-\partial_{y} F_{x}\right)=(1-1,1-1,1-1)=0$.
(b) The potential function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfies $\nabla f(x, y, z)=\mathbf{F}$, i.e.

$$
\begin{align*}
& \frac{\partial f}{\partial x}=a(x)+y+z \tag{1}\\
& \frac{\partial f}{\partial y}=x+b(y)+z \tag{2}\\
& \frac{\partial f}{\partial z}=x+y+c(z) \tag{3}
\end{align*}
$$

From Eq. (??) we get $\frac{\partial f}{\partial x}=a(x)+y+z$. Integrating with respect to x gives $f(x, y, z)=A(x)+y x+z x+g(y, z)$, where A is an integral of a (note that different choices for A differ only by constants which can be absorbed in the function g). Differentiating this f with respect to y should agree with the right hand side of Eq. (??). Equating the two gives $\frac{\partial g(y, z)}{\partial y}=b(y)+z$. Integrating with respect to y gives $g(y, z)=B(y)+z y+h(z)$ where B is an integral of b (similarly to above different choices for B differ by constants which can be absorbed in the function $h)$. Hence $f(x, y, z)=A(x)+y x+z x+B(y)+y z+h(z)$. Differentiating this f with respect to z should agree with the right hand side of Eq. (??). Equating the two gives $c(z)=h^{\prime}(z)$. Integrating with respect to z gives $h(z)=C(z)+d$ where $d \in \mathbb{R}$ is a constant. Hence

$$
f(x, y, z)=A(x)+B(y)+C(z)+x y+x z+y z+d
$$

(c) Here $\mathbf{F}(x, y, z)=\left(x+y+z, x+y^{2}+z, x+y+z^{3}\right)$. As a parametrization of the straight line segment connecting \mathbf{p} and \mathbf{q} we choose $\mathbf{r}:[0,1] \rightarrow \mathbb{R}^{3}$, $t \mapsto(1-t) \mathbf{p}+t \mathbf{q}=(1-t, 1, t)$. Hence

$$
\begin{aligned}
\int_{\mathbf{p q}} \mathbf{F} \cdot \mathrm{d} \mathbf{s} & =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{0}^{1}\left(2,2,2-t+t^{3}\right) \cdot(-1,0,1) \mathrm{d} t \\
& =\int_{0}^{1}\left(t^{3}-t\right) \mathrm{d} t=\left[\frac{1}{4} t^{4}-\frac{1}{2} t^{2}\right]_{0}^{1}=-\frac{1}{4}
\end{aligned}
$$

Following part (a) the potential function is $f(x, y, z)=\frac{1}{2} x^{2}+\frac{1}{3} y^{3}+\frac{1}{4} z^{4}+x y+$ $x z+y z+d$. Hence $f(q)-f(p)=\frac{1}{3}+\frac{1}{4}-\left(\frac{1}{2}+\frac{1}{3}\right)=-\frac{1}{4}$.
b. a)

$$
\begin{aligned}
& a \in \mathbb{R}^{3}, 7=f a=f a_{1} i+f a_{2} j+f a_{3} k \\
& \Rightarrow \nabla \cdot F=\frac{\partial}{\partial x}\left(f a_{1}\right)+\frac{\partial}{\partial y}\left(f a_{2}\right)+\frac{\partial}{\partial z}\left(f a_{3}\right) \\
& \\
& =a_{1} f_{x}+a_{2} f y+a_{3} f_{z}=a \cdot \nabla f=\nabla f \cdot a
\end{aligned}
$$

b) Let $a=i, F=f_{a}=f_{i}$

$$
\begin{aligned}
\Rightarrow \nabla \cdot F & =f_{x} \\
\text { also } F \cdot n & =f_{i} \cdot n=f_{n}
\end{aligned}
$$

By Gui' Diougenu Theorem

Thugg'm in $\vec{F} \cdot \vec{u}=f n$, and $\vec{v} \cdot \vec{F}=t \times$ gibes the res sect.
Similarly for $a=j$ and $a=k$
c) just plugin the components...

