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8 April 2019, 18:30-21:30 %g groningen

The exam consists of 6 problems. You have 180 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [54+5+45=15 Points] Let the function f: R*> — R be defined as
22y2 .
flz,y) = { P ?f (z,y) # (0,0)
0 if (z,y9) = (0,0)
(a) Is f continuous at (z,y) = (0,0)? Justify your answer.

(b) Use the definition of directional derivatives to determine for which unit vectors
u = (v,w) € R? the directional derivative D,, f(0,0) exists.

(c) Is f differentiable at (x,y) = (0,0)7 Justify your answer.

2. [15 Points] Suppose z = f(z,y) has continuous partial derivatives. Let us denote
the function obtained by substituting x = e" cosf and y = €"sin# as Z. Show that

&) G -GG

3. [6+3+6=15 Points] Consider the curve parametrized by r : [0,1] — R? with

2 1.
r(t):ti+\/7—t2j+§t3k.

(a) Determine the length of the curve.
(b) For each point on the curve, determine a unit tangent vector.

(c) At each point on the curve, determine the curvature of the curve.

4. [346+6=15 Points| Let S be the ellipsoid in R? defined by

2 2
2, Y z
—_ —:3

x+4+9

which contains the point (xg, yo, 20) = (1,2, 3).

(a) Compute the tangent plane of S at the point (g, yo, 20)-

(b) Show that near the point (¢, yo, 20) the ellipsoid S is locally given as the graph
of a function over the (z,y) plane, i.e. there is a function f : (z,y) — f(z,y)
such that near (xo, o, 20) the ellipsoid is locally given by z = f(x,y). Compute
the partial derivatives f, and f, at (z¢,y0) and show that the graph of the
linearization of f at (z¢,yo) agrees with the tangent plane found in part (a).

— please turn over —



(c¢) For a point P = (z,y,2) in S, there is a box inscribed in S with corners

([L’, Y, Z)? (l‘, Y, _Z)7 (Ia -Y, _Z)a ([L’, -y, Z)a (—QT, Y, Z)a (—QT, Y, _Z)a (—ZL', —-Y, _Z>
and (—z, —y, z). Use the method of Lagrange multipliers to determine the box
with largest possible volume.

5. [4454+6=15 Points] Let a, b and ¢ be continuous functions R — R.
(a) Show that
F=(a(z)+y+2)i+(x+by)+2)j+(x+y+c(z)k

is conservative.
(b) Determine a scalar potential for F.

(c) For a(z) = z, b(y) = y* and c(z) = 2, compute the line integral along the
straight line segment connecting the point p = i+j to the point ¢ = j+k. Verify
this result using the potential function from part (b).

6. [5+5+5=15 Points| Let f : R®* — R, (x,y,2) — f(z,y,2) be a function of class
C', and let D be a solid region in R3. Let n = (ny,n9,n3) be the outward normal
unit normal vector to S = 9D (the boundary of D).

(a) If a € R3 is any constant vector and F = fa, show that V-F =V [ - a.
(b) Use part (a) with a =i to show that

%fnldS://Dg—idV,

and obtain similar results by letting a equal j and k.
(¢) Define a vector quantity ¢p. fdS = ¢p fndsS by

#:; fnds = (%[é fna1ds, %[é fnads, %[é fns dS) .

Show that with this notation

ﬁéfndS://DVde,

where the right hand side is a vector whose components are obtained by inte-
grating each of the scalar components of the integrand.



1. (a)

(c)

Solutions

Substituting polar coordinates x = r cosf and y = rsiné for (z,y) # (0,0) gives
222 rt cos? @ sin® 6 cos? @ sin® @

syt r4(cost @ +sin*0)  costd +sin 0

For r — 0, this has an limit that depends on 6. For example, for 6 = 7, the
limit is
cos® @ sin® 55 1

costf +sintf ($)2+(3)?2 2
which is not equal to f(0,0) = 0. The function f is hence not continuous at
(z,y) = (0,0).
Let u = (v,w) € R? be a unit vector, i.e. v?2 +w? = 1. Then for the directional
derivative D, f(0,0) to exist the difference quotient

f(tv, tw) — £(0,0)
t

must have a limit for t — 0. For ¢t # 0, we have

4v2w2
tv, tw) — (0,0 —t4tv4+w4 -0 1 v2w?
_ ¥ ) _
t N t ottt

This has a limit for ¢ — 0 only if v?w? = 0, i.e. v = 0 or w = 0. This means that
only directional derivatives in the direction of the x-axis and the y-axis exist.
The derivatives are f,(0,0) = f,(0,0) = 0.

f is not differentiable at (z,y) = (0,0) because f is not continuous at (x,y)
(0,0) as we have seen in part (a). Also if f was differentiable at (z,y) = (0,
then the directional derivative in part (b) would equal w -V f(0,0) = v f,(0,0)
ww f,(0,0) = 0. But the directional derivative does not exist for every direction
u as we have seen in part (b).

)
_l’_

2. By the chain rule, we have

and

0: _0:00 020y
or  O0xOr  Oyor
0z 0 )
= —¢"cosf+ —e"sinb

z
ox Jy

0: _0:00 020y
00 0x 00 Oyl
0z 0z . .
= —¢"cosf) — —e"sinf.

Oy ox

So we have

9z1* [02]° . , 020z . 921 . .,
[E} = [%] (e" cos b)) +28_m@_y6 cosf - e"sinf + [a—y} (e"sin0)



and

9z 0z1% . ., 020z, . 921% )
[%} = [%] (e"sin0) _2%6@6 cosf - e"sinf + [a—y} (e"cosh)”.

Adding the latter two equations yields

% i + % = (e")? % 2 (cos? 0 + sin? 0) + (e")? % 2 (sin® @ + cos® )
or 00| Ox dy

—e [l 2

which gives the desired equality

5[] - [l 3]

3. (a) The tangent vector

r'(t)=1i+V2tj+ k.
has length
[t/(t)] = V14262 +t4 =142,
The length of the curve is hence

t=1

! 1 1
/ |r’(t)|dt:/(1+t2)dt:t+§t3 =1+-=
0

1
0 t=0 3

(b) Normalizing the tangent vector found in part (a) gives the unit tangent vector
at the point r(t) as

1 1
r'(t) = ——(1i+ V2t + t*k).

T = ) =

(c) The curvature  of the curve at the point r(¢) is given by

1 |d 1 V2 V2
K= —T(t)| = = :
v/(¢)] | dt 1+2214+2  (1+1¢2)?
4. (a) The ellipsoid S is given by the zero-level set of the function F(x,y,2) = x? +

% + % — 3. We can hence find a normal vector of the tangent plane of S at
(20, Yo, 20) from VF (o, yo, 20) = 2xei+ %yoj + %ng =2i+1j+ %k. The tangent

plane is hence given by VF(xg, yo, 20) - (x — 2o,y — Y0, 2 — 20) = 0, i.e.

2o~ 1)+ (y=2) + 2(:~3) =0

or equivalently,
6x + 3y + 2z = 18.



(b) Using the fact that S is given by the zero-level set of the function F' defined
in part (a) the local existence of the function f follows from the Implicit Func-
tion Theorem if we can show that %—f(azo,yo, 20) # 0. The latter follows from

%—f(mo, Yo, 20) = %ZO = % The Implicit Function Theorem gives
Fl’(x07y07zo> 2$0 2
fxxay = - =—5—=—5=-3
( 0 0) -FZ(SL’(),Z/O,ZO) %ZO %
and ( ) .
F, To, Yo, 20 §y0 1 3
£ (o o) = — plTovo) gt L3
ol ) F.(20, Y0, 20) 220 2 2
The linearization of f at (g, o) is given by

L(z,y) = f(zo,90) + fo(wo,y0)(x — z0) + fy (20, Y0) (¥ — Yo)

= 3-3@-1)- 5~ 2)

3
= 9—-3z 2y.
The graph of the linearization is given by the equation z = L(x,y) which agrees
with the tangent plane found in part (a).
(c) The volume of the box is given by V' (z,y, z) = 8zyz. It follows from the Theorem
on Lagrange Multipliers that at a critical point (z,y,2) € S of V restricted to
S there is a A € R such that VV(z,y,2) = AVF(x,y, z) where we use that the
constraint S is given by the zero-level set of the function F' defined in part (a).
In order to find the critical points we have to solve the set of equations

‘/;?(:L‘7y’ z) = )\Fm(x7y7z)7

‘/;y(xvyuz) = )\Fy('rayvz)u
Vilz,y,2) = AFi(z,y,2),
F(z,y,z) = 0.
for z, y, z and A. This gives
8yz = A,
1
8 = A=
2
Sry = )\52,
2 2
2, Y Z
42— 3
YT !

Asforzx =0,y =0o0r z=0, V(z,y,2) = 0 we can assume z,y, z # 0. We then
get

FLARNEEY
xr
1625 = A,
y
362 — )
4

2 2

2, Y <

2 42 - 3

x+4—|—9



Equating the left sides of the first and the second equality gives y = 2x. Equating
the left sides of the first and the third equality gives z = 3x. This allows one to
eliminate y and z in the last equality to get 3z% = 3 which givesz = 1 (or z = —1
which we can discard by symmetry). So we get y = 2x = 2 and z = 3z = 3.
The largest volume is hence V. =8-1-2-3 = 48.

Since F is defined on a simply connected domain it is sufficient to show that
V x F =0 in order to prove that F is conservative.:

VxF(z,y,2) = (0,F.—0.F,,0.Fy— 0, F.,0,F,—0,F,) = (1—1,1—-1,1—1) = 0.

The potential function f : R® — R satisfies V f(z,y,2) = F, i.e.

g—iza(x)+y+z, (1)
g—‘;:x+b(y)+z, (2)
%—x—i-y—i-c(z). (3)
From Eq. (??7) we get % = a(x) + y + z. Integrating with respect to x gives

f(z,y,2) = A(z)+yz+zx+9(y, 2), where A is an integral of a (note that different
choices for A differ only by constants which can be absorbed in the function g).
Differentiating this f with respect to y should agree with the right hand side of
Eq. (??). Equating the two gives %@’Z) = b(y) + z. Integrating with respect to
y gives g(y, z) = B(y) + zy + h(z) where B is an integral of b (similarly to above
different choices for B differ by constants which can be absorbed in the function
h). Hence f(z,y,z) = A(z) + yzr + zzx + B(y) + yz + h(z). Differentiating this
f with respect to z should agree with the right hand side of Eq. (??). Equating
the two gives c¢(z) = h/(z). Integrating with respect to z gives h(z) = C(z) +d
where d € R is a constant. Hence

flz,y,2) = A(z) + B(y) + C(2) + 2y + 2z +yz +d.

Here F(x,y,z) = (x +y+z,x+ y2 +z,x+ Y+ 23). As a parametrization
of the straight line segment connecting p and q we choose r : [0,1] — R3,
t— (1—-t)p+tq=(1—t,1,t). Hence

/F-ds _ /1F(r(t))-r’(t)dt:/1(2,2,2—t+t3)-(—1,0,1)dt

= /1(t3—t)dt—[1t4—1t2]1———
L S 270y

Following part (a) the potential function is f(z,y,2) = s2* + %y3 + iz‘l +ay +
xz+yz+d. Hence f(q) — f(p) =2+ — (5 +3
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